Target-derived neurotrophins coordinate transcription and transport of bclw to prevent axonal degeneration.
نویسندگان
چکیده
Establishment of neuronal circuitry depends on both formation and refinement of neural connections. During this process, target-derived neurotrophins regulate both transcription and translation to enable selective axon survival or elimination. However, it is not known whether retrograde signaling pathways that control transcription are coordinated with neurotrophin-regulated actions that transpire in the axon. Here we report that target-derived neurotrophins coordinate transcription of the antiapoptotic gene bclw with transport of bclw mRNA to the axon, and thereby prevent axonal degeneration in rat and mouse sensory neurons. We show that neurotrophin stimulation of nerve terminals elicits new bclw transcripts that are immediately transported to the axons and translated into protein. Bclw interacts with Bax and suppresses the caspase6 apoptotic cascade that fosters axonal degeneration. The scope of bclw regulation at the levels of transcription, transport, and translation provides a mechanism whereby sustained neurotrophin stimulation can be integrated over time, so that axonal survival is restricted to neurons connected within a stable circuit.
منابع مشابه
Paclitaxel Reduces Axonal Bclw to Initiate IP3R1-Dependent Axon Degeneration.
Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating side effect of many cancer treatments. The hallmark of CIPN is degeneration of long axons required for transmission of sensory information; axonal degeneration causes impaired tactile sensation and persistent pain. Currently the molecular mechanisms of CIPN are not understood, and there are no available treatments. Here we show...
متن کاملبررسی اثر عصاره مغز جنین بر نرون های هسته عصب هیپوگلوس ضایعه دیده در رت (Rat)
Background and purpose: Lesion on neural fiber is a phenomenon which can lead to cell death of the relevant functional neurons through a retrograde degeneration. Ïn order to show the probable effect of existing trophic factors present in immature brain (fetus) in maintaining and existence of mature motor neurons, this study was conducted experimentally on animals. Materials and Methods: Ïn...
متن کاملFates of neurotrophins after retrograde axonal transport: phosphorylation of p75NTR is a sorting signal for delayed degradation.
Neurotrophins can mediate survival or death of neurons. Opposing functions of neurotrophins are based on binding of these ligands to two distinct types of receptors: trk receptors and p75NTR. Previous work showed that target-derived NGF induces cell death, whereas BDNF and NT-3 enhance survival of neurons in the isthmo-optic nucleus of avian embryos. To determine the fate of retrogradely transp...
متن کاملRetrograde axonal transport of neurotrophins: differences between neuronal populations and implications for motor neuron disease.
During development, neurons die if they do not receive neurotrophin support from the target cells they are innervating. Neurotrophins are delivered from the target to the cell bodies of the innervating neurons by interacting with specific receptors located on the nerve terminals and then together are retrogradely transported to the cell body. This process consists of a number of distinct events...
متن کاملPreparation and maintenance of dorsal root ganglia neurons in compartmented cultures.
Neurons extend axonal processes that are far removed from the cell body to innervate target tissues, where target-derived growth factors are required for neuronal survival and function. Neurotrophins are specifically required to maintain the survival and differentiation of innervating sensory neurons but the question of how these target-derived neurotrophins communicate to the cell body of inne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 33 12 شماره
صفحات -
تاریخ انتشار 2013